3.129 \(\int \frac{1}{x \sqrt{a+b x+c x^2}} \, dx\)

Optimal. Leaf size=38 \[ -\frac{\tanh ^{-1}\left (\frac{2 a+b x}{2 \sqrt{a} \sqrt{a+b x+c x^2}}\right )}{\sqrt{a}} \]

[Out]

-(ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + b*x + c*x^2])]/Sqrt[a])

________________________________________________________________________________________

Rubi [A]  time = 0.0158717, antiderivative size = 38, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {724, 206} \[ -\frac{\tanh ^{-1}\left (\frac{2 a+b x}{2 \sqrt{a} \sqrt{a+b x+c x^2}}\right )}{\sqrt{a}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*Sqrt[a + b*x + c*x^2]),x]

[Out]

-(ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + b*x + c*x^2])]/Sqrt[a])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{x \sqrt{a+b x+c x^2}} \, dx &=-\left (2 \operatorname{Subst}\left (\int \frac{1}{4 a-x^2} \, dx,x,\frac{2 a+b x}{\sqrt{a+b x+c x^2}}\right )\right )\\ &=-\frac{\tanh ^{-1}\left (\frac{2 a+b x}{2 \sqrt{a} \sqrt{a+b x+c x^2}}\right )}{\sqrt{a}}\\ \end{align*}

Mathematica [A]  time = 0.0093191, size = 37, normalized size = 0.97 \[ -\frac{\tanh ^{-1}\left (\frac{2 a+b x}{2 \sqrt{a} \sqrt{a+x (b+c x)}}\right )}{\sqrt{a}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*Sqrt[a + b*x + c*x^2]),x]

[Out]

-(ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + x*(b + c*x)])]/Sqrt[a])

________________________________________________________________________________________

Maple [A]  time = 0.003, size = 35, normalized size = 0.9 \begin{align*} -{\ln \left ({\frac{1}{x} \left ( 2\,a+bx+2\,\sqrt{a}\sqrt{c{x}^{2}+bx+a} \right ) } \right ){\frac{1}{\sqrt{a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(c*x^2+b*x+a)^(1/2),x)

[Out]

-1/a^(1/2)*ln((2*a+b*x+2*a^(1/2)*(c*x^2+b*x+a)^(1/2))/x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.36145, size = 273, normalized size = 7.18 \begin{align*} \left [\frac{\log \left (-\frac{8 \, a b x +{\left (b^{2} + 4 \, a c\right )} x^{2} - 4 \, \sqrt{c x^{2} + b x + a}{\left (b x + 2 \, a\right )} \sqrt{a} + 8 \, a^{2}}{x^{2}}\right )}{2 \, \sqrt{a}}, \frac{\sqrt{-a} \arctan \left (\frac{\sqrt{c x^{2} + b x + a}{\left (b x + 2 \, a\right )} \sqrt{-a}}{2 \,{\left (a c x^{2} + a b x + a^{2}\right )}}\right )}{a}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

[1/2*log(-(8*a*b*x + (b^2 + 4*a*c)*x^2 - 4*sqrt(c*x^2 + b*x + a)*(b*x + 2*a)*sqrt(a) + 8*a^2)/x^2)/sqrt(a), sq
rt(-a)*arctan(1/2*sqrt(c*x^2 + b*x + a)*(b*x + 2*a)*sqrt(-a)/(a*c*x^2 + a*b*x + a^2))/a]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x \sqrt{a + b x + c x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral(1/(x*sqrt(a + b*x + c*x**2)), x)

________________________________________________________________________________________

Giac [A]  time = 1.0966, size = 47, normalized size = 1.24 \begin{align*} \frac{2 \, \arctan \left (-\frac{\sqrt{c} x - \sqrt{c x^{2} + b x + a}}{\sqrt{-a}}\right )}{\sqrt{-a}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

2*arctan(-(sqrt(c)*x - sqrt(c*x^2 + b*x + a))/sqrt(-a))/sqrt(-a)